Phone: 0744-2429714
Website: www.vpmclasses.com
Mobile: $9001297111,9829567114,9001297243$
E-Mail: vpm classes@yahoo.com /inf o@vpmclasses.com Address: 1-C-8, Shee la Chowdhary Road, SFS, TA LWANDI, KOTA, RAJASTHA N, 324005

Page 1

Area by Double Integration

Let the area $A B C D$ be divided into sub-areas by draw ing ines parallel to x and y-axis respectively such that the distance between two adjoining lines drawn paralel to y-axis be δx and those draw n parallel to x-axis be δy.

Let $P(x, y)$ and $Q(x+\delta x, y+\delta)$ be two neighbouring points on the curve $A D$ whose equation is $y=f(x)$ as in case (a). PN and QM are the ordinates at P and Q respectively. Then the area of the element, show n by shaded lines in adjoining figure is $\delta \times 8 \%$.

Consequently the area of the strip $P N M Q=\int_{y=0}^{f(x)} d x d y$, where $y=f(x)$ is the equation of AD.
\therefore The required area $A B C D=\int_{x=a}^{b} \int_{y=0}^{f(x)} d x d y$.

Fg. 1
In a similar way, we can prove that the area bounded by the curve $x=f(y)$, the y-axis and the abscissa at $y=a$ and $y=b$ is given by

Fg. 2

If $w e$ are to find the area bounded by the two curves $y=f_{1}(x)$ and $y=f_{2}(x)$ and the ordinates $x=a$ and $x=b$ i.e. the area $A B C D$ in the figure below then the required area $=$ $\int_{x=a}^{b} \int_{y=f_{2}(x)}^{f_{1}(x)} d x d y$.

Ex. Find the area of the region bounded by the parabolas $y=x^{2}$ and $y=4-x^{2}$.
Sol. $\quad x^{2}=y$ represents a parabola w hose vertex is at $(0,0)$ and $y=4-x^{2}$ represents a parabola w hose vertex is at $(0,4)$.

Solving the two equations we get $y=4-y$ or $2 y=4$ or $y=2$
$\therefore x^{2}=2$ or $x= \pm \sqrt{2}$
\therefore The tw o parabolas intersect at $\mathrm{A}(\sqrt{2}, 2)$ and $\mathrm{B}(-\sqrt{2}, 2)$.
\therefore Required area $=2($ area $O A C O)=2[$ area OADO + area $D A C D]=2\left[\int_{y=0}^{2} x d y+\int_{y=2}^{4} x d y\right]$,
(w here the first integral is for $x^{2}=y$ and second for $y=4-x^{2}$)
$=2\left[\int_{0}^{2} \sqrt{y} d y+\int_{2}^{4} \sqrt{(4-y)} d y\right]=2\left[\left(\frac{2}{3} y^{\frac{3}{2}}\right)_{0}^{2}-\left\{\frac{2}{3}(4-y)^{\frac{3}{2}}\right\}_{2}^{4}\right]$
$=2\left[\left(\frac{4}{3}\right) \sqrt{2}+\left(\frac{2}{3}\right)(2)^{\frac{3}{2}}\right]=\left(\frac{16}{3}\right) \sqrt{2}$. Ans.

Fig. 3

Are a of curve given by polar equation

(a) Single Integration

The area bounded by the curve $r=f(\theta)$, where $f(\theta)$ is a single value continuous function of θ in the do main (α, β) and the radii vectors $\theta=\alpha$ and $\theta=\beta$ is equal to $\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta,(\alpha<\beta)$

Proof. Let Obe the pole, OX the initial line and AB be the portion of the arc of the curve $\mathrm{r}=$ $f(\theta)$ between the radii vectors $\theta=\alpha$ and $\theta=\beta$.
Let $P(r, \theta)$ be any point on the curve betw een A and B. Let $Q(r+\delta r, \theta+\delta \theta)$ be a point neighbouring to P . Join OP and OQ . With $\mathrm{OP}=\mathrm{r}$ as radius and O as centre describe an arc PN of the circle meeting OQ in N . Similarly with O as centre and $\mathrm{OQ}=r+\delta r$ as radius draw another arc QM of circle meeting OP produced in M .
Let the sectorial areas OAP and OAQ be denoted by S and $S+\delta S$ respectively.
Then the area $O P Q=(S+\delta S)-S=\delta S$.

Fig. 4

Also as $\mathrm{OP}=\mathrm{r}, \mathrm{OQ}=\mathrm{r}+\delta$ and $\angle \mathrm{POQ}=\delta \theta$ so sectorial area $\mathrm{OPN}=\frac{1}{2} \mathrm{r}^{2} \delta \theta$ and sectorial area $O Q M=\frac{1}{2}(r+\delta r)^{2} \delta \theta$. Now area OPQ lies betw een area OPN and area OQM i.e. Area δS lies between $\frac{1}{2} r^{2} \delta \theta$ and $\frac{1}{2}(r+\delta r)^{2} \delta \theta$. i.e. $\left(\frac{\delta S}{\delta \theta}\right)$ lies betw een $\frac{1}{2} r^{2}$ and $\frac{1}{2}(r+\delta r)^{2}$
$\therefore \quad$ In the limit as $\delta \theta \rightarrow 0$, we have $\left(\frac{d S}{d \theta}\right)=\frac{1}{2} r^{2}$ or $\quad \frac{1}{2} r^{2} d \theta=d S$
Integrating $\frac{1}{2} \int_{\alpha}^{\beta} r^{2} \mathrm{~d} \theta=[\text { area } S]_{\alpha}^{\beta},=($ Area S when $\theta=\beta)-($ Area S when $\theta=\alpha)=($ Area $A O B)-(0)=$ Area AOB.

Hence, required area $A O B=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta$.

(b) Double Integration

The area bounded by the curve $r=f(\theta)$, where $f(\theta)$ is single valued function of θ in the domain (α, β) and radii vectors $\theta=\alpha$ and $\theta=\beta$ is $\int_{\theta=\alpha}^{\beta} \int_{r=0}^{f(\theta)} r d \theta d r$
Ex. Find by double integration the area lying inside the cardioid $r=a(1+\cos \theta)$ and out side the circle $r=a$.

Sol. Required area $=$ area $A B C D A=2($ area $A B D A)=$
$=\mathrm{a}^{2} \int_{0}^{\frac{\pi}{2}}\left[(1+\cos \theta)^{2}-1\right] d \theta=\mathrm{a}^{2} \int_{0}^{\frac{\pi}{2}}\left(\cos ^{2} \theta+2 \cos \theta\right) \mathrm{d} \theta=\mathrm{a}^{2}\left[\frac{1}{2} \cdot \frac{\pi}{2}+2(\sin \theta)_{0}^{\frac{\pi}{2}}\right]=\mathrm{a}^{2}\left[\frac{\pi}{4}+2\right]$
$=\frac{1}{4} \mathrm{a}^{2}(\pi+8)$ Ans.

Fig 5

GROUP

Binary Operation

Let S be a non-empty set. Any function from $S \times S$ to S is called binary operation. i.e.
if $0: s \times s \rightarrow s$ defined as。 $(a, b)=a \cdot b \in S, \forall a, \in S$, then is binary operation.

Mathem atical Structure

Let S be a no e mpty set. Let be an operation on S then (S,) is a mathe matical structure.

Grouped (Quasi - group)

Mathematical structure (S,) is said to be grouped, if is binary operation i.e., . $\forall \mathrm{a}, \mathrm{b} \in \mathrm{S} \Rightarrow \mathrm{a} \cdot \mathrm{b} \in \mathrm{S}$

Semi group

A group (S, \circ), is semi group if it is associative i.e.,
Monoid ($\mathrm{a} \cdot \mathrm{b}$) $\circ \mathrm{c}=\mathrm{a} \circ(\mathrm{b} \circ \mathrm{c}), \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}$
If identity element $e \in S$ exist in a semi group $(S$,$) , then it is monoid, i.e.,$ $\forall a \in S, \exists e \in S: a \circ e=a=e \circ a$

Group

If inverse element exists for every element in a monoid (S,), then it is a group, i.e., $\forall \mathrm{a} \in \mathrm{S}$,
$\exists a^{-1} \in S: a^{-1}=e=a^{-1} \circ$

Comm utative group (Abelian Group)

A group (S ,), is a commutative group, if. $\quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{S}, \mathrm{a} \circ \mathrm{b}=\mathrm{b} \circ \mathrm{a}$

The Different Groups					
	Quasi group	Semi group	Monoid	Group	Abelian Group
Clouser	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Associative	-	\checkmark	\checkmark	\checkmark	\checkmark
Exstence of Identify	-	-	\checkmark	\checkmark	\checkmark
Exstence of inverse	-	-	-	\checkmark	\checkmark
Commutati ve	-	-	-	-	\checkmark

Table - 1

GROUP

Definition

Let $G \neq \phi$ be a set. Let be an operation defined in G, then mathe matical structure (G, \circ) w ill be group if it satisfies.
(i) Closure law : $\forall \mathrm{a}, \mathrm{b} \in \mathrm{G} \Rightarrow \mathrm{a} \circ \mathrm{b} \in \mathrm{G}$
(ii) Associative law: $(\mathrm{a} \circ \mathrm{b}) \circ \mathrm{c}=\mathrm{a} \circ(\mathrm{b} \circ \mathrm{c}), \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$
(iii) Existence of identity: $\forall \mathrm{a} \in \mathrm{G}, \exists \mathrm{e} \in \mathrm{G} \circ \mathrm{a} \circ \mathrm{e}=\mathrm{a}=\mathrm{e} \circ \mathrm{a}$
(iv) Existence of inverse: $\forall \mathrm{a} \in \mathrm{G}, \exists \mathrm{a}^{-1} \in \mathrm{G}: \mathrm{a} \circ \mathrm{a}^{-1}=\mathrm{e}=\mathrm{a}^{-1} \circ \mathrm{a}$

Results

- Identity element in a group is unique.
- Inverse of each element of a group is unique.
- If $a, b \in G$, then $(a b)^{-1}=b^{-1} a^{-1}$. This law is known as reversal rule. One can generalize it as $(a b c \ldots . . z)^{-1}=z^{-1} \ldots . . c^{-1} b^{-1} a^{-1}$.
- Cancellation law holds in a group. i.e. $a b=a c \Rightarrow b=c$ and $b a=c a \Rightarrow c=a$
- If $a, b \in G$, then linear equations $a \circ x=b, y \circ a=b$ have unique solutions for $x, y \in G$

Order of Group

The number of elements in a group G , is order of group denoted by of $\mathrm{O}(\mathrm{G})$.
If $\left(\mathrm{G},{ }^{*}\right)$ if an infinite group then it is said to be of infinite order.

Order of Element

Let G be a group. Let $a \in G$, then n is called order of element a, denoted by $O(a)=n$, if $a^{n}=$ e, w here n is least positive integer.

Results on Order of an Bement of a Group

- The order of every element of a finite group is finite.
- If there is no positive integer n such that $a^{n}=e$, than order of $a, o(a)$ is infinite or zero.
- The order of every element of a finite group is less than or equal to the order of the group.

If G is a finite then $o(a) \leq 0(G), a \in G$.

- The order of an ele ment of a group is same as that of its inverse.
- Order of any integral pow er of an element $a \in G$ cannot exceed the order of a.
- If $a \in G$ a group,$o(a)=n$ and $a^{m}=e$, then n / m.
- If $a \in G$ is an ele ment of order n and p is prime to n, then a^{p} is also of order n.
- If every element of a group except the ide ntity element is of order two, then G is abelian.
- If every element of a group G is is ow n inverse, then G is abelian.

Theorem. f order of an element a of a group $\left(\mathrm{G},{ }^{*}\right)$ is n then $\mathrm{a}^{\mathrm{m}}=\mathrm{e}$, iff m is a multiple of n .
Proof. Let $a^{m}=e$

$$
\text { By division algorithm } m=n q+r, \quad 0 \leq r \leq n \text { where } q, r \in Z
$$

$$
\therefore a^{m} \Rightarrow a^{m q+r}=e
$$

$\Rightarrow \mathrm{a}^{\mathrm{nq}} \mathrm{a}^{\mathrm{r}}=\mathrm{e}$
$\Rightarrow\left(\mathrm{a}^{\mathrm{n}}\right)^{\mathrm{a}} \cdot \mathrm{a}^{\mathrm{r}}=\mathrm{e}\left[\therefore\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{mn}}\right]$
$\Rightarrow \mathrm{e}^{\mathrm{q}} . \mathrm{a}^{\mathrm{r}}=\mathrm{e} \quad\left[\therefore \mathrm{O}(\mathrm{a})=\mathrm{n} \Rightarrow \mathrm{a}^{\mathrm{n}}=\mathrm{e}\right]$

$$
\begin{aligned}
& \Rightarrow \mathrm{a}^{\mathrm{r}}=\mathrm{e} \\
& \Rightarrow \mathrm{r}=0 \quad[\therefore 0 \leq \mathrm{r} \leq \mathrm{n}] \\
& \Rightarrow \mathrm{m}=\mathrm{mq}
\end{aligned}
$$

So, n/m

Conversely

Let m is multiple of n i.e. $m=n q(q \in Z)$
$m=n q \Rightarrow a^{m}=a^{n q}=\left(a^{n}\right)^{q}=e^{q}=e$
So, $a^{m}=e \Leftrightarrow m$ is multiple of $O(a)$.
If $a, x \in G$ a group, then $O(a)=O\left(x^{-1} a x\right)$

Theorem. For any element a of group of G :

$$
O(a)=O\left(x^{-1} a x\right), \forall x \in G
$$

Proof. Let $a \in G, x \in G$

$$
\begin{aligned}
& \left(x^{-1} a x\right)^{2}=\left(x^{-1} a x\right)\left(x^{-1} a x\right) \\
& \quad=x^{-1}\left(x x^{-1}\right) a x \\
& =x^{-1} \text { aeax } \\
& =x^{-1}(a e a) x \\
& =x^{-1} a^{2} x
\end{aligned}
$$

Again consider that $\left(x^{-1} a x\right)^{n-1}=x^{-1} a^{n-1} x$, where $(n-1) \in N$

$$
\begin{aligned}
& \Rightarrow\left(x^{-1} a x\right)^{n-1}\left(x^{-1} a x\right)=\left(x^{-1} a^{n-1} x\right)\left(x^{-1} a x\right) \\
& \Rightarrow\left(x^{-1} a x\right)^{n}=x^{-1} a^{n-1}\left(x x^{-1}\right) a x \\
& \\
& =x^{-1} a^{n-1}(e a x) \\
& \\
& =x^{-1}\left(a^{n-1} a\right) x=x^{-1} a^{n} x
\end{aligned}
$$

By mathe matical induction
$\left(x^{-1} a x\right)^{n}=x^{-1} a^{n} x, \forall n \in N$
now let $\quad O(a)=n$ and $O\left(x^{-1} a x\right)=m$

$$
\begin{align*}
& \left(x^{-1} a x\right)^{n}=x^{-1} a^{n} x=x^{-1} e x=e \\
& \quad \Rightarrow O\left(x^{-1} a x\right) \leq n \\
& \quad \Rightarrow m \leq n \tag{1}
\end{align*}
$$

Again $\quad O\left(x^{-1} a x\right)=m \Rightarrow\left(x^{-1} a x\right)^{m}=e$

$$
\Rightarrow x^{-1} a^{m} x=e
$$

$$
\Rightarrow x\left(x^{-1} a^{m} x\right) x^{-1}=x e x^{-1}=e
$$

$$
\Rightarrow\left(x x^{-1}\right) a^{m}\left(x x^{-1}\right)=e
$$

$$
\Rightarrow \mathrm{ea}^{\mathrm{m}} \mathrm{e}=\mathrm{e}
$$

$$
\Rightarrow \mathrm{O}(\mathrm{a}) \leq \mathrm{m}
$$

$$
\begin{equation*}
\Rightarrow \mathrm{n} \leq \mathrm{m} \tag{2}
\end{equation*}
$$

By (1) and (2) $\quad n=m$

$$
\Rightarrow \mathrm{O}(\mathrm{a})=\mathrm{O}\left(\mathrm{x}^{-1} \mathrm{ax}\right)
$$

If $O(a)$ is infinite then $O\left(x^{-1} a x\right)$ is also infinite.

Ex. If a, b are elements of an abelian group G, then prove that :
$(a b)^{n}=a^{n} b^{n}, \forall n \in Z$
Sol. Case (i) When $n=0$

$$
\begin{array}{rlr}
(\mathrm{ab})^{0} & =\mathrm{e}=\mathrm{ee} \quad\left[B y \text { the Def }{ }^{n}\right] \\
& =\mathrm{a}^{\circ} \mathrm{b}^{0}
\end{array}
$$

Case (ii) When $\mathrm{n}>0$;

$$
(a b)^{1}=a b=a^{1} b^{1}
$$

Result is true for $\mathrm{n}=1$
Let result is true for $n=K$
$(a b)^{k}=a^{\prime} b^{k}$
$\Rightarrow(\mathrm{ab})(\mathrm{ab})^{\mathrm{k}}=(\mathrm{ab})\left(\mathrm{a}^{\mathrm{k}} \mathrm{b}^{\mathrm{k}}\right)$
$\Rightarrow(a b)^{k+1}=a\left(\mathrm{ba}^{\mathrm{k}}\right) \mathrm{b}^{\mathrm{k}} \quad$ [associativity]
$=a\left(a^{k} b\right) b^{k}$
$=\left(a a^{k}\right)\left(b^{k}\right)$
$=a^{k+1} b^{k+1}$
By mathematical induction result is true for all integers
Case (iii) When $n<0$ Let $n=-m$ where $m \in Z^{+}$

$$
\begin{aligned}
&(a b)^{n}=(a b)^{-m}=\left[(a b)^{m}\right]^{-1} \\
&=\left(a^{m} b^{m}\right)^{-1} \\
&=\left(b^{m} a^{m}\right)^{-1} \\
&=\left(a^{m}\right)^{-1}\left(b^{m}\right)^{-1} \\
&=a^{-m} b^{-m} \\
&=a^{n} b^{n}
\end{aligned}
$$

By above conditions
G is Commutative $\Rightarrow(a b)^{n}=a^{n} b^{n}, \forall n \in Z$

Permutation

Let Pbe a finite set having n distinct ele ments. Then a one-one mapping onto itself $f: P \rightarrow P$ is called a permutation of degree n, in the finite set P is called the degree of the permutation.

Let $P=\left\{a_{1}, a_{2}, a_{3}\right\}$ be a finite set having n distinct ele ments. If $f: P \rightarrow P$ is one - one onto, then f is a permutation of degree n. Let f is a permutation of degree n.
Let $f\left(a_{1}\right)=b_{1}, f\left(a_{2}\right)=b_{2}, \ldots \ldots f\left(a_{n}\right)=b_{n}$ symbolically one canw rite it as $f=\left(\begin{array}{lllll}a_{1} & a_{2} & \ldots & \ldots & a_{n} \\ b_{1} & b_{2} & \ldots . & b_{n}\end{array}\right)$, where each element in the second row is f image of the elements of the first row.

Equality of two permutations

Tw o permutations f_{1} and f_{2} on P are said to be equal. If we have $f_{1}(a)=f_{2}(a)$.

Total number of distinct Perm utations \mathbf{P}

Let P be a finite set having n distinct elements. There shall be n ! permutations of degree n , of the element in a set.

Identity Permutations

If I is a permutation of degree n such that I replace each element by itself, I is called the identity per mutation of degree n.

Inverse of a Permutation

If f is a permutation of degree n defined on a finite non-empty set P. Since f is one-one onto, it is inverse able.
$f=\left(\begin{array}{cccc}a_{1} & a_{2} & \ldots \ldots & a_{n} \\ b_{1} & b_{2} & \ldots & \ldots \\ b_{n}\end{array}\right)$ then $f^{-1}=\left(\begin{array}{cccc}b_{1} & b_{2} & \ldots \ldots & b_{n} \\ a_{1} & a_{2} & \ldots & a_{n}\end{array}\right)$

- f^{-1} is obtained by interchanging the rows of f because $f\left(a_{1}\right)=b_{1} . \Rightarrow f^{-1}\left(b_{1}\right)=a_{1}$

Products or composite of permutations

If tw o permutations of degree n be
$f_{1}=\left(\begin{array}{cccc}a_{1} & a_{2} & \ldots \ldots & a_{n} \\ b_{1} & b_{2} & \ldots . . & b_{n}\end{array}\right)$ and $f_{2}=\left(\begin{array}{cccc}b_{1} & b_{2} & \ldots . . & b_{n} \\ c_{1} & c_{2} & \ldots . . & c_{n}\end{array}\right)$
Then the products of these two functions is defined as
$\mathrm{f}_{1} \mathrm{f}_{2}=\left(\begin{array}{llll}a_{1} & a_{2} & \ldots \ldots & a_{n} \\ c_{1} & c_{2} & \ldots & \ldots \\ c_{n}\end{array}\right)$
-The product $f_{1} f_{2}$ is also a permutation of degree n.

- Product of permutations is not necessarily commutative.

Associativity of permutation. The associative law is true for the product of the permutations i.e. f, g and h are permutations, then $(\mathrm{fg}) \mathrm{h}=\mathrm{f}$ (gh)

Group of Permutations

The set of all the per mutations of a given non-empty set A is denoted by S_{A}. Therefore if $A=$ $\{a, b\}$, then

$$
S_{A}=\left\{\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right),\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)\right\}
$$

If $A=\{a, b, c\}$, then

$$
S_{A}=\left\{\left(\begin{array}{lll}
a & b & c \\
a & b & c
\end{array}\right),\left(\begin{array}{lll}
a & b & c \\
b & c & a
\end{array}\right),\left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right),\left(\begin{array}{lll}
a & b & c \\
a & c & b
\end{array}\right),\left(\begin{array}{lll}
a & b & c \\
c & b & a
\end{array}\right),\left(\begin{array}{lll}
a & b & c \\
b & a & c
\end{array}\right)\right\}
$$

It can be easily seen that

$$
\mathrm{O}(\mathrm{~A})=\mathrm{n} \Rightarrow \mathrm{O}\left(\mathrm{~S}_{\mathrm{A}}\right)=\mathrm{n}!
$$

Even and odd permutation

A permutation is said to be an even permutation if it can be expressed as a product of an even number of transposition.

- A permutation can not be both even or odd i.e, per mutation f is expressed as a product of transposition, then the number of transposition is either alw ays even or alw ays odd.
- Identity per mutation is alw ays an even permutation.
-The product of two even permutation is an even permutation.
- The product of two odd permutations is an even permutation.
- A cycle of length n can be expressed as the product of $n-1$ permutation.
- The inverse of an even permutation is an even permutation and the inverse of an odd permutation is an odd permutation.
- Out of n ! permutations on n sy mbols $\frac{1}{2} n$! are even $\frac{1}{2} n$! are odd.

Alternating group. (Group of even permutation).

On the basis of the above conclusions of the product of even and odd permutations of any set, we will show that the set of permutations is also a group.

Theorem. The set A_{n} of all even permutations of degree n is a group of order $\frac{1}{2} n!$ for the product of permutations.

Im portant Results

(i) When $n=3, A_{3}=\left\{(1),\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$
(ii) A_{n} is a simple group for $n \geq 5$

Every group of prime order is a simple group because such group has no proper subgroup.
(iii) The set of odd permutations of degree n is not a group because it is not closed for multiplication.
(iv) If H is a sub group of G and $\mathrm{N} \triangleleft \mathrm{G}$, then $\mathrm{H} \cap \mathrm{N}$ need not be normal in G .

For example, let
$N=A_{4}=\{(1),(123),(124),(132),(134),(142),(143),(234),(243),(12)(34),(13)(24),(14)$ (23) $\}$
$H=\{(1),(1234),(13)(24),(1432),(12)(34),(14)(23),(13)(24)\}$
This can be easily verified that
$\mathrm{N} \triangleleft \mathrm{S}_{4}$ and His a subgroup of S_{4}.
But $\mathrm{H} \cap \mathrm{N}$ is not a normal subgroup of S_{4}
(v) $\frac{S_{3}}{A_{3}}$ is a commutative and cyclic group, being group of order 2 but S_{3} is non abe lian and not a cyclic group.
(vi). The alternating group A_{n} of all even permutations of degree n is a normal subgroup of the symmetric group S_{n}.
i.e. $A_{n} \triangleleft S_{n}$

Ex. If

$$
\rho=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 8 & 9 & 6 & 4 & 5 & 2 & 3 & 1
\end{array}\right), \sigma=(134)(56)(2789)
$$

then find $\sigma^{-1} \rho \sigma$ and by expressing the permutation ρ as the product of disjoint cycles, find w hether ρ is an even permutation or odd permutation. Also find its order.

Sol. $\quad \sigma=(134)(56)(2789)$

$$
\begin{aligned}
& =\left(\begin{array}{lllllllll}
1 & 3 & 4 & 5 & 6 & 2 & 7 & 8 & 9 \\
3 & 4 & 1 & 6 & 5 & 7 & 8 & 9 & 2
\end{array}\right)=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 4 & 1 & 6 & 5 & 8 & 9 & 2
\end{array}\right) \\
& \therefore \quad \sigma^{-1}=\left(\begin{array}{lllllllll}
3 & 7 & 4 & 1 & 6 & 5 & 8 & 9 & 2 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}\right)=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 9 & 1 & 3 & 6 & 5 & 2 & 7 & 8
\end{array}\right) \\
& \text { Again } \rho \sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 8 & 9 & 6 & 4 & 5 & 2 & 3 & 1
\end{array}\right)\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 4 & 1 & 6 & 5 & 8 & 9 & 2
\end{array}\right) \\
& =\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 2 & 6 & 7 & 5 & 4 & 3 & 1 & 8
\end{array}\right) \\
& \sigma^{1} \rho \sigma=\sigma^{1}(\rho \sigma) \\
& =\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 9 & 1 & 3 & 6 & 5 & 2 & 7 & 9
\end{array}\right)\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 2 & 6 & 7 & 5 & 4 & 3 & 1 & 8
\end{array}\right) \\
& =\left(\begin{array}{lllllllll}
9 & 2 & 6 & 7 & 5 & 4 & 3 & 1 & 8 \\
8 & 9 & 5 & 2 & 6 & 3 & 1 & 4 & 7
\end{array}\right)\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 2 & 6 & 7 & 5 & 4 & 3 & 1 & 8
\end{array}\right) \\
& =\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 9 & 5 & 2 & 6 & 3 & 1 & 4 & 7
\end{array}\right)=\left(\begin{array}{llllll}
1 & 8 & 4 & 2 & 9 & 7
\end{array}\right)\left(\begin{array}{lll}
3 & 5 & 6
\end{array}\right) \\
& \text { Again } \rho=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 8 & 9 & 6 & 4 & 5 & 2 & 3 & 1
\end{array}\right)=\left(\begin{array}{llllll}
1 & 7 & 2 & 8 & 3 & 9
\end{array}\right)\left(\begin{array}{lll}
4 & 6
\end{array}\right) \\
& -(19)(13)(18)(12)(17)(45)(46) \\
& \text { = product of } 7 \text { (odd) transpositions. }
\end{aligned}
$$

Since ρ is equal to the product of odd transpositions,
Therefore this is a odd permutation.

Finally, $O(p)=$ L. C. M. of $\{O(172839), O(465)\}$

$$
=\text { L. C. } M \text { of }\{6,3\}=6
$$

Uniform convergence of sequences

Suppose that the sequence $\left\{f_{n}(x)\right\}$ converges for every point x in R. It means that the function f_{n} tends to a definite limit as $n \rightarrow \infty$ for every x in R. This limit will be a function of x, say f. Then from the definition of a limit it follows that for every $\in>0$, there exists a positive integer msuch that

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon
$$

The integer m will depend upon x as well as \in and sowe may write it symbolically as $m(x$, $\epsilon)$. Now suppose that we keep \in fixed and vary x. Then for a given point x in R, there w ill correspond a value of $m(x, \in)$. In this way, we shall get a set of values of $m(x, \in)$. This set of values of $m(x, \in)$ may or may not have an upper bound. If this set has an upper bound, say M, then for every point x in R w w have

$$
n \geq M \Rightarrow\left|f_{n}(x)-f(x)\right|<\in
$$

In such a case, we say that the sequence $\left\{f_{n}\right\}$ converge uniformly to f on X.
Definition. A sequence $\{\uparrow\}$ of functions is said to converge uniformly on R to a function f if for every $\in>0$, there can be found a positive integer m such that

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon
$$

for all $x \in R$.
Remark. Observe that the convergence of a sequence $\left\{f_{n}(x)\right\}$ at every point (i.e., point-w ise convergence) does not necessarily ensure its uniform convergence on R. A sequence of functions may be convergent at every point of R and yet may not be uniformly convergent on R. For example, consider the sequence $\left\{f_{n}\right\}$ defined on $[0,1]$ as follow s by $f_{n}(x)=x^{n}$.
Here, we have $\lim _{n \rightarrow \infty} x^{n}=0$ if $0 \leq x<1$
and

$$
\lim _{n \rightarrow \infty} x^{n}=1 \text { if } x=1 \text {. }
$$

Thus the limit function f is defined by

$$
f(x)\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq x<1 \\
1 & \text { if } & x=1 .
\end{array}\right.
$$

The function f_{n} therefore has a definite limit for every value of x in $[0,1]$ as $n \rightarrow \infty$ and consequently the sequence $\left\{f_{n}(x)\right\}$ converges for every $x \in[0,1]$.
to see whether the convergence is uniform, we consider the interval $[0,1]$. Let $\in>0$ be given. Then

$$
\begin{align*}
& \left|f_{n}(x)-f(x)\right|<\epsilon \Rightarrow\left|x^{n}-0\right|<\epsilon \Rightarrow x_{n}<\epsilon \Rightarrow \frac{1}{x^{n}}>\frac{1}{\epsilon} \\
& \quad \Rightarrow n \log \frac{1}{x}>\log \frac{1}{\epsilon} \Rightarrow n>\frac{\log (1 / \epsilon)}{\log (1 / x)} \tag{1}
\end{align*}
$$

Thus w hen $x \neq 1, m(x, \epsilon)$ is any integer greater than

$$
\log (1 / \epsilon) \log (1 / \mathrm{x}) .
$$

In particular $\mathrm{m}(\mathrm{x}, \epsilon)=1 \quad$ when $\mathrm{x}=0$.
Now as x, starting from 0 , increases and approaches 1 , it is evident from (1) that $n \rightarrow \infty$ and so it is not possible to determine a positive integer m such that

$$
n \geq m \Rightarrow\left|f_{n}(x-f(x))\right|<\epsilon
$$

for all $x \in[0,1[$.
Thus $\left\{\mathrm{f}_{n}\right\}$ is not uniformly convergent in $[0,1[$.
If, how ever, we consider the interval $0 \leq x \leq k$, where $0<k<1$, we see that the greatest value of $\log (1 / \epsilon) / \log (1 / x)$ is $\log (1 / \epsilon) \cdot \log (1 / k)$ so that if we take m equal to any positive integer greater than th is greatest value, we have

$$
n \geq m \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon
$$

for all $x \in[0, k]$
Thus $\{\mathrm{f}(\mathrm{x})\}$ converges unformly on $[0, \mathrm{k}]$.

Uniform Convergence and Differentiation.

Theorem. Let $\left\{f_{n}\right\}$ be a sequence of the real valued functions defined on $[\mathrm{a}, \mathrm{b}]$ such that
(i) f_{n} is differentiable on $[a, b]$ for $n=1,2,3, \ldots$,
(ii) The sequence $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{c})\right\}$ converges for some point c of $[\mathrm{a}, \mathrm{b}]$,
(iii) The sequence $\left\{f{ }_{n}\right\}$ converges uniformly on $[a, b]$.

Then the sequence $\left\{f_{n}\right\}$ converges uniformly to a differentiable limit f and

$$
\lim _{x \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x) \quad(a \leq c \leq b)
$$

Proof. Let $\epsilon>0$ be given. Then by the convergence of $\left\{f_{n}(c)\right\}$ and by the uniform convergence of $\left\{f_{n}{ }^{\prime}\right\}$ on $[a, b]$, there exists a positive integer m such that for all $n \geq m, p \geqslant m$,
we have

$$
\begin{equation*}
\left|f_{n}(c)-f_{p}(c)\right|<\frac{\epsilon}{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f_{n}^{\prime}(x)-f_{p}^{\prime}(x)\right|<\frac{\epsilon}{2(b-a)} \quad(a \leq x \leq b) . \tag{2}
\end{equation*}
$$

Applying the mean value theore mof differential calculus to the function $f_{n}-f_{p}$, we have

$$
\left.\left[f_{n}(x)-f_{p}(x)\right]-\mathbb{I}_{n}(y)-f_{p}(y)\right]=(x-y)\left[f_{n}^{\prime}(\xi)-f_{p}^{\prime}(\xi)\right]
$$

For any x and y in $[a, b]$ and for some ξ betw een x and y provided $n \geq m, p \geq m$. Hence

$$
\begin{align*}
\mid f_{n}(x)- & f_{p}(x)-f_{n}(y)+f_{p}(v)|=|x-y|| f_{n}^{\prime}(\xi)-f_{p}^{\prime}(\xi) \mid \\
& <\frac{|x-y| \in}{2(b-a)} \text { by (2) } \tag{3}\\
& <\frac{\varepsilon}{2}[\because|x-y| \leq(b-a)] \tag{4}
\end{align*}
$$

for all $n, p \geqslant m$ and all $x, y \in[a, b]$. Now

$$
\begin{aligned}
&\left|f_{n}(x)-f_{p}(x)\right|=\left|f_{n}(x)-f_{p}(x)-f_{n}(c)+f_{p}(c)+f_{n}(c)-f_{p}(c)\right| \\
& \leq\left|f_{n}(x)-f_{p}(x)-f_{n}(c)+f_{p}(c)\right|+\mid f_{n}(c)-f_{p}(c) \\
&<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \quad \text { by (1) and (4), }
\end{aligned}
$$

for all $\mathrm{n}, \mathrm{p} \geq \mathrm{m}$ and for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$. Thus we have show n that given $\in>0$, there exists a positive integer m such that

$$
n \geq m, p \geq m, x \in[a, b] \quad \Rightarrow\left|f_{n}(x)-f_{p}(x)\right|<\epsilon
$$

It follow sthat the sequence $\left\{f_{n}\right\}$ converges uniformly to a function f and so

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \quad(a \leq x \leq b)
$$

This proves the first result.
Now for an arbitrary but for the moment a fixed $x \in[a, b]$, define

$$
\begin{equation*}
F_{n}(y)=\frac{f_{n}(y)-f_{n}(x)}{y-x} \quad F(y)=\frac{f(y)-f(x)}{y-x} \tag{5}
\end{equation*}
$$

for $a \leq y \leq b, y \neq x$. Then

$$
\begin{equation*}
\lim _{y \rightarrow x} F_{n}(y)=\lim _{y \rightarrow x} \frac{f_{n}(y)-f_{n}(x)}{y-x}=f_{n}(x) \tag{6}
\end{equation*}
$$

for $n=1,2,3, \ldots$
Now for $n \geq m, p \geq m$ w have

$$
\begin{aligned}
& \left|F_{n}(y)-F_{p}(y)\right|=\left|\frac{f_{n}(y)-f_{n}(x)+f_{p}(y)-f_{p}(x)}{y-x}\right| \\
& \quad<\frac{\epsilon}{2(b-a)} \quad \text { by }(3) .
\end{aligned}
$$

It follows that $\left\{F_{n}\right\}$ converges uniformly for $y \neq x$. Since $\left\{f_{n}\right\}$ converges to f, we conclude from (5) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n}(y)=\lim _{n \rightarrow \infty} \frac{f_{n}(y)-f_{n}(x)}{y-x}=\frac{f(y)-f(x)}{y-x}=F(y) \tag{7}
\end{equation*}
$$

Uniformly for $a \leq y \leq b, y \neq x$.

$$
\lim _{y \rightarrow x} F(y)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

or

$$
\begin{align*}
& \lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=\lim _{n \rightarrow \infty} f_{n}(x) \text { by (5) } \\
& f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}{ }^{\prime}(x) \tag{8}
\end{align*}
$$

for every $x \in[a, b]$.
The theorem is thus completely established.

Term by term differentiation.

Cor. Let $\sum_{n=1}^{\infty} u_{n}(x)$ be a series of real valued differentiable functions on $[a, b]$ such that $\sum_{n=1}^{\infty} u_{n}(c)$ converges for some point c of $[a, b]$ and $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on $[a, b]$. Then the series $\sum_{n=1}^{\infty} u_{n}{ }^{\prime}(x)$ converges uniformly on $[a, b]$ to a differentiable sum function f and

$$
\text { , } f^{\prime}(x)=\lim _{n \rightarrow \infty} \sum_{m=1}^{n} u_{m}^{\prime}(x) \quad(a \leq x \leq b) .
$$

In other w ords, if $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$, then

$$
\frac{d}{d x}\left(\sum_{n=1}^{\infty} u_{n}(x)\right)=\sum_{n=1}^{\infty}\left[\frac{d}{d x} u_{n}(x)\right]
$$

Proof. Let $f_{n}(x)=u_{1}(x)+u_{2}(x)+\ldots+u_{n}(x)$.
Then $f_{n}^{\prime}(x)=u_{1}^{\prime}(x)+u_{2}^{\prime}(x)+\ldots+u_{n}^{\prime}(x)$
$[\because$ The differential coefficient of the sum of a finite number of differentiable functions is equal to the sum of their differential coefficients].

Hence the series $\sum_{n=1}^{\infty} u_{n}(x)$ and $\sum_{n=1}^{\infty} u_{n}^{\prime}(x)$ are respectively equivalent to the sequences $\left\{f_{n}\right\}$ and $\left\{f_{n}{ }^{\prime}\right\}$. Now proceed as in the above theorem

Theorem. Let $\left\{f_{n}\right\}$ be a sequence of realvalued functions defined on $[a, b]$ such that
(i) f_{n} is differentiable on $[a, b]$ for $n=1,2,3, \ldots$
(ii) the sequence $\left\{f_{n}\right\}$ converges to f on $[a, b]$,
(iii) the sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ \} converges uniformly on $[\mathrm{a}, \mathrm{b}]$ to g ,
(iv) each f 'is continuous on $[a, b]$.

Then $g(x)=f^{\prime}(x)(a \leq x \leq b)$. That is,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f^{\prime}(x) \quad(a \leq x \leq b) .
$$

Proof. Since $\left\{f_{n}^{\prime \prime}\right\}$ is a uniformly convergent sequence of continuous functions, it follow s that g is continuous on $[a, b]$. Moreover $\left\{f_{n}{ }_{n}\right\}$ converges uniformly to g on $[a, x]$ where x is any point of [a, b]. Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{a}^{x} f_{n} \prime(t) d t=\int_{a}^{x} g(t) d t \tag{1}
\end{equation*}
$$

But by the fundamental theorem of integral calculus, we have

$$
\int_{a}^{x} f_{n}^{\prime}(t) d t=f_{n}(x)-f_{n}(a) .
$$

Also by hypothesis,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} f_{n}(a)=f(a) .
$$

Hence (1) gives

$$
f(x)-f(a)=\int_{a}^{x} g(t) d t \quad(a \leq x \leq b)
$$

It follow s

$$
\begin{array}{ll}
& f^{\prime}(x)=g(x) \quad(a \leq x \leq b) \\
\text { or } \quad & f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}(x)
\end{array}
$$

Ex. Consider the series $\sum \frac{(-1)^{n-1}}{\left(n+x^{2}\right)}$ for uniformconvergence for all values of x.
Sol. Let $u_{n}=(-1)^{n-1}, v_{n}(x)=\frac{1}{n+x^{2}}$.
Since $f_{n}(x)=\sum_{r=1}^{n} u_{r}=0$ or 1 according as n is even or odd, $f_{n}(x)$ is bounded for all n.
Also $v_{n}(x)$ is a positive monotonic decreasing sequence converging to zero for all real values of x .

Hence the given series is uniforml convergent for all real values of x .
Ex. If $f(x)=\sum_{i}^{\infty} \frac{1}{n^{3}+n^{4} x^{2}}$, then f ind its differential coefficient
(A) $-2 x \sum_{1}^{\infty} \frac{1}{n^{2}\left(1+n x^{2}\right)^{2}}$
(B) $2 x \sum_{1}^{\infty} \frac{1}{n^{2}\left(1+n x^{2}\right)^{2}}$
(C) $\sum_{1}^{\infty} \frac{1}{n^{2}\left(1+n x^{2}\right)^{2}}$
(D) $\sum_{1}^{\infty} \frac{-1}{n^{2}\left(1+n x^{2}\right)^{2}}$

Sol. Here $u_{n}(x)=\frac{1}{n^{3}+n^{4} x^{2}}$
and

$$
u_{n}^{\prime}(x)=\frac{2 x}{n^{2}\left(1+n x^{2}\right)^{2}} .
$$

Now $\quad u_{n}^{\prime}(x)$ is maximum when $\frac{\mathrm{du}_{n}(x)}{d x}=0$
i.e. $\quad\left(1+n x^{2}\right)^{2}-4 n x^{2}\left(1+n x^{2}\right)=0$
or $\quad 1-3 n x^{2}=0 \quad$ or $x=\frac{1}{\sqrt{(3 n)}}$.
$\therefore \quad \operatorname{Max} .\left|u_{n}^{\prime}(x)\right|=\frac{2}{\sqrt{3 n^{5 / 2}\left(1+\frac{1}{3}\right)^{2}}}=\frac{3 \sqrt{3}}{8 n^{5 / 2}}$.
Then $\left|u_{n}^{\prime}(x)\right|<\frac{1}{n^{5 / 2}}$ for all values of x.
But $\sum \frac{1}{\mathrm{n}^{5 / 2}}$ is convergent.
Hence by Weierstrass's M-test, the series Σu_{n} ' is uniformly convergent for al real values of x . The ter mby term differentiation is therefore justified.

Hence . $f^{\prime}(x)=\sum_{n=1}^{\infty} u_{n}(x)=-2 x \sum_{1}^{\infty} \frac{1}{n^{2}\left(1+n x^{2}\right)^{2}}$

